
VBXE FPGA core "FX"
version 1.0 beta 7

Programmer’s Manual

Copyright © 2009 by T.Piórek

Table of contents
THE XDL................................................................................................................................2
OVERLAY MODES................................................................................................................8
THE COLOUR ATTRIBUTE MAP........................................................................................16
MSEL/RGB...........................................................................................................................18
MSEL/PRIORMAP...............................................................................................................19
MEMAC................................................................................................................................20
BLITTER..............................................................................................................................22
CORE REGISTERS.............................................................................................................31

1



THE XDL

The  XDL (eXtended  Display List)  is  a  list  of  commands,  that  controls  the  OVERLAY 
display and the attribute map of  the VBXE. The XDL is loaded to the VBXE memory 
through  the  MEMAC buffers  (see  the  MEMAC description).  It  may be  loaded  to  any 
location inside the 512KB VBXE VRAM, and it is pointed to by the registers XDL_ADR0, 
XDL_ADR1 i XDL_ADR2. The XDL processing starts, when the bit XDL_ENABLED in the 
VIDEO_CONTROL register is set to 1. There are no limitations on the XDL’s size, and its 
structure is vertical: as it is the case of the ANTIC DL, the XDL processing „starts” at the 
top of the display.

The XDL is structured as follows:

XDLC (2 bytes)
additional data (0-20 bytes)
XDLC (2 bytes)
additional data (0-20 bytes)
...
...
XDLC with the XDLC_END marker (2 bytes)
additional data (0-20 bytes)

The „XDLC” stands for the XDL Control word. This word always occupies two bytes. Every 
bit of the control word has different meaning (see the Table 1). A part of the bits enables or 
disables display functions, and another part of them carries an information, whether the 
XDL Controller should fetch additional data, and what data it would be. The bits do not 
depend  on  each  other,  any  combination  of  them  can  be  used  at  any  time;  it  is,  for 
example, possible to load the Overlay video memory address leaving the Overlay switched 
off. The XDLC word gets processed before the line starts to be displayed.

2



byte.bit 
XDLC

bit’s label meaning additional data

1.0 XDLC_TMON enable Overlay Text Mode -
1.1 XDLC_GMON enable Overlay Graphic Mode -
1.2 XDLC_OVOFF disable Overlay -
remarks: Setting more than one of the bits 0.0, 0.1 and 0.2 will cause the Overlay to be 

switched off.  The Overlay is disabled by default  (at  the top of  the screen). 
Leaving all of these bits zeroed will preserve the current state of the overlay. It 
can be useful when you only want to change the font or scrolling values. 

1.3 XDLC_MAPON enable colour attributes -
1.4 XDLC_MAPOFF disable colour attributes -
remarks: Setting more than one of the bit 0.3 and 0.4 will disable the attributes. It is also 

disabled  by default,  i.e.  at  the  top  of  the  screen.  Leaving all  of  these bits 
zeroed will preserve the current state of the map. It can be useful when you 
only want to change the font or scrolling values. 

1.5 XDLC_RPTL no changes in next x scanlines number  of  scanlines 
(x) (1 byte)

remarks: After the current line was displayed, there will be x consecutive scanlines to 
use the same settings, and XDL will not be processed for them.
For example, if you want to display a line of text, enable the text mode with 
XDLC_TMON, and set XDLC_RPTL giving 7 as x. As a result 8 scanlines will 
be produced forming a line of the text mode.

1.6 XDLC_OVADR set the address and step of the 
Overlay display memory

5  bytes  (3  byte 
address  and  2  byte 
step), little endian.

remarks: The  address  of  the  Overlay  display  memory  is  a  19-bit  value.  The  step 
parameter defines, how many bytes should be added to the address, so that it 
would point to the data for the next line. The  step may be a value from 0 to 
4095.

The order of the additional data:
1. OVADR[7:0]
2. OVADR[15:8]
3. OVADR[18:16]
4. OVSTEP[7:0]
5. OVSTEP[11:8]

In a pixel mode the OVSTEP gets added to the OVADR after every scanline. In 
the text mode the OVSTEP is added to the OVADR when eight lines of the 
character have been displayed.

1.7 XDLC_OVSCRL Set  scrolling  values  for  the  text 
mode

2 bytes:
1. hscroll (1 byte)
2. vscroll (1 byte)

3



byte.bit 
XDLC

bit’s label meaning additional data

remarks: hscroll is a value ranged 0 ... 7, where 0 is a not scrolled line, and 7 is a line 
scrolled 7 pixels to the left.
vscroll is a value ranged 0 ... 7, where 0 is a not scrolled line, and 7 is a line 
scrolled 7 pixels up.

By default, at the top of the screen, hscroll = vscroll = 0.
Scrolling values can be changed in every scanline. Setting the XDLC_OVSCRL 
does not enable the scroll (which is always on), but only sets the VALUES OF 
THE  SCROLLING  REGISTERS.  These  values  will  be  used  for  every 
consecutive scanline until the XDL changes them.
The horizontal scrolling unit is 1 pixel VBXE hires (or 0.5 pixel GR.8).

2.0 
(XDLC 
2nd 
byte)

XDLC_CHBASE set character base 1 byte = font address

remarks: The font contains 256 characters, 8x8 pixels each, and should be loaded to the 
VBXE memory. Every font must start at a 2K boundary, therefore up to 256 
fonts can be loaded to the 512K VRAM. As everything else, the font is stored in 
the VBXE memory through the MEMAC buffers.

2.1 XDLC_MAPADR set the address and step of the 
colour attribute map

5  bytes  (3  byte 
address  and  2  byte 
step), little endian.

remarks: The colour attribute map may start at any location in the VBXE memory.

Data order:
1. AMAP[7:0]
2. AMAP[15:8]
3. AMAP[18:16]
4. MAPSTEP[7:0]
5. MAPSTEP[11:8]

The MAPSTEP value is automatically added to the AMAP address when the 
attribute field has been completely displayed vertically (i.e. after displaying the 
last – bottom – scanline of the field), unless the settings get explicitly changed 
by the XDL.

4



byte.bit 
XDLC

bit’s label meaning additional data

2.2 XDLC_MAPPAR set  scrolling  values,  width  and 
height  of  a  field  in  the  colour 
attribute map

4 bytes:
1. hscroll (1 byte)
2. vscroll (1 byte)
3. width (1 byte)
4. height (1 byte)

remarks: hscroll  is  a  value  of  range <0 ...  31>,  where  0  means that  the  line  is  not 
scrolled, and 31 – that the line is scrolled 31 pixels to the left.
vscroll  is  a  value  of  range <0 ...  31>,  where  0  means that  the  line  is  not 
scrolled, and 31 – that the line is scrolled 31 pixels up.
width – the width of the field in pixels, range <7 ... 31> == 8 to 32 pixels (as in 
ANTIC GR.8)
height – the height of the field in scanlines <0 ... 31> == 1 to 32 lines
hscroll  and vscroll  for the map should never get greater than the respective 
values of width and height.

Default values (at the top of the screen) are:
hscroll = vscroll = 0;
height = width = 7; (the field size 8x8)

The field size and scrolling values may be changed in any scanline. The hscroll 
unit for the map is 1 pixel GR.8.

Setting XDLC_MAPPAR does not  enable the map to  scroll  (this  function is 
always on), it only loads the scrolling registers. The values loaded will be used 
in consecutive scanlines until they are explicitly changed with XDL.

5



byte.bit 
XDLC

bit’s label meaning additional data

2.3 XDLC_OVATT Setting  the  display  size  (both 
Overlay  and  Colour  map)  and 
Overlay  priority  to  the  ANTIC 
display.  And  Overlay  colour 
modification.

2 bytes:
1.  Overlay  /  map 
width  +  Overlay 
colour modification
2. main priority

remarks: BYTE 1:

OV_WIDTH: OVERLAY and COLOUR MAP width:

0 = NARROW (256 pixels, as ANTIC narrow)
1 = NORMAL (320 pixels,as ANTIC normal)
2 = WIDE (336 pixels, as ANTIC wide; in this mode the display is 8 pixels wider 
at both sides, than NORMAL)

The default (at the top of the screen) width is NORMAL (320 pixels).

OV_COLOR_SHIFT: primary modification of the OVERLAY pixel colour. Valid 
in all Overlay modes.

If the colour is not transparent (see „Transparent Overlay colours”), then:

effective_color = ( palette_number * 256 ) + 
+ ( (OV_COLOR_SHIFT * 16 ) | color_selected_by_Overlay_data );

where the "|" is bitwise OR.

This  allow to  increase the  number  of  displayable colours,  especially in  the 
VBXE hires pixel mode.

OV_COLOR_SHIFT value is 0 by default. The possible values are from 0 to 
15.

BAJT 2: Main priority.

b0 - 1 = OVERLAY over PM0, 0 = OVERLAY overlaid by PM0
b1 - 1 = OVERLAY over PM1
b2 - 1 = OVERLAY over PM2
b3 - 1 = OVERLAY over PM3
b4 - 1 = OVERLAY over PF0
b5 - 1 = OVERLAY over PF1
b6 - 1 = OVERLAY over PF2
b7 - 1 = OVERLAY over PF3

The default value (at the top of the screen) of the priority is 255. 
The main priority is not taken into account, when the attribute map is enabled. 
In this case it is the map, that decides, which one of the 4 predefined priorities 
P0 ... P3 will be used for the particular part of the screen.

2.4 XDLC_HR enable the Hi-Res pixel mode -

6



byte.bit 
XDLC

bit’s label meaning additional data

remarks: This bit is only taken into account, when XDLC_GMON == 1.
The HR mode (or  hires)  has a resolution of  640 pixels  horizontally for  the 
NORMAL display width and can display 16 colours, from $00 to $0F, in the 
current Overlay palette (of  course, the OV_COLOR_SHIFT can be used as 
well).
Each pixel is represented by a nibble of data (4 bits) in the VBXE memory. 
Each data byte contains 2 nibbles: the most significant nibble represents the 
leftmost pixel.

2.5 XDLC_LR enable the Low Resolution mode -
This bit is only taken into account, when XDLC_GMON == 1.
The  LR mode has a  resolution  of  160 pixels  horizontally for  the  NORMAL 
display  width.  The  number  of  displayable  colours  is  the  same  as  in  the 
standard display mode (256).

2.6 - reserved (=0) -
2.7 XDLC_END XDL end  (the  last  XDL record), 

wait for VSYNC.
-

remarks: XDLC_END tells  the  XDL controller,  than  after  processing  of  this  XDLC is 
finished, it has to wait for the vertical sync pulse, and then start processing the 
XDL from the beginning.

7



OVERLAY MODES

The bit combos that enable the Overlay display modes of the VBXE:

XDLC_TMON XDLC_GMON XDLC_HR XDLC_LR mode
0 1 0 0 Pixel SR (320 / 256c)
0 1 1 0 Pixel HR (640 / 16c)
0 1 0 1 Pixel LR (160 / 256c)
0 1 1 1 Forbidden
1 0 X X 80-column text mode

1 1 X X Forbidden,  works  as 
XDLC_OVOFF

Pixel modes

The SR mode (Standard Resolution)

This is a pixel mode that can display 256/320/336 pixels horizontally (the width is selected 
via XDL, the vertical resolution is defined by the XDL structure) in 256 colours. Every pixel 
is represented by a byte in VBXE memory. If the value of this byte is 0, then the pixel is 
not displayed (it is transparent, unless the no_trans bit in the VIDEO_CONTROL register 
is set to 1). The other values select the colour from the current Overlay palette, and the 
value of the byte is the colour number. After displaying a scanline, the VBXE automatically 
increases the address of the data to fetch from the screen memory adding the step value, 
ranged 0 ... 4095, as defined by the XDL. 

The LR mode (Low Resolution)

This  is  a  pixel  mode  with  horizontal  resolution  of  128/160/168  pixels.  All  other 
characteristics are as in the SR mode.

The HR mode (High Resolution)

This is a pixel mode with horizontal resolution of 512/640/672 pixels (the width is selected 
via XDL, the vertical resolution is defined by the XDL structure) in 16 colours.

A byte of the video memory contains information about 2 pixels, 4 bits each:

b7 b6 b5 b4 b3 b2 b1 b0
Leftmost pixel Rightmost pixel

The transparency is selected, when the nibble value is 0.

Each  pixel  selects  the  colour  0  ...  15  from the  currently  selected  (locally  or  globally) 
Overlay palette.

8



The text mode

This is a text mode with horizontal resolution of 64/80/84 characters (the width is selected 
via XDL, the vertical resolution is defined by the XDL structure) in 128 or 16+8 colours. 
The video memory structure is as follows:

char (1 byte), attribute (1 byte), char, attribute, char, attribute, .... and so on.

The char is a value 0-255 and defines which character of the 256-character font will be 
displayed.

The attribute has the following structure:

b7 – decides, whether the character’s background is transparent or it has a colour.

when b7 = 0:

b7 b6 b5 b4 b3 b2 b1 b0
0 foreground (pixels set to 1) colour = $00 .. $7F

b0 ... b6 = colour number (0 ... 127) for the character, i.e. colours 0...127 from the 
active (locally or globally) Overlay palette.

The character’s background is transparent, if the no_trans bit in the
 VIDEO_CONTROL register is cleared (0) – or it has the colour no. 128 otherwise.

if b7 = 1:

b7 b6 b5 b4 b3 b2 b1 b0
1 foreground (pixels set to 1) colour = $00 .. $7F

background colour = $80 .. $FF (foreground colour + $80)

b0  ...  b6  =  colour  number  for  the  character  (0...127  for  the  foreground  and 
128...255

for the background), i.e. colours 0-255 from the active (locally or globally) Overlay
palette.

The background is not transparent.

In other words:

colour of enabled pixels: always 0 ... 127 (attribute value & 127) 
colour of disabled pixels: 

a) when VC bit 2 (no_trans) == 0 
if (attribute < 128) -> transparent background 
otherwise background colour = (attribute & 127) + 128 (i.e. 128 ... 255) 

b) when VC bit 2 (no_trans) == 1 
if (attribute < 128) -> background colour = 128 
otherwise background colour = (attribute & 127) + 128 (i.e. 128 ... 255) 

The full line of the text mode occupies the number of bytes in the memory equal to 2x line 

9



width  in  characters.  Additionally  the  line  can  be  expanded  by 1  byte  because  of  the 
hscroll.

Text mode scroll

See the XDL description.

Special techniques applying to Overlay modes

It  is  possible  to  enable  additional  transparent  colours,  see  the  section  „Transparent 
Overlay  colours”,  and  the  primary  colour  modification  in  XDL,  see  „Overlay  colour 
modification”.

10



Overlay colour modification

The  number  of  colours  in  any  of  the  Overlay  modes  may  be  increased  using  two 
mechanisms:

● OV_COLOR_SHIFT

The XDL-defined register OV_COLOR_SHIFT (values 0 ...  15) allows to change 
(per

scanline) the colour resulting from the Overlay data according to the following 
formula:

effective_colour = (OV_COLOR_SHIFT * 16) | Overlay_data;

with the following exception:

If the (Overlay_data == 0 && VIDEO_CONTROL.no_trans == 0) – i.e. when the
colour is transparent, then it remains transparent.

● changing the current palette:

There are four user-defined palettes, 256 colours each. The effective colour of the 
Overlay is selected by expanding this formula:

effective_colour (see above)

with 2 palette-selection bits:

○ when the colour attribute map is disabled, the Overlay always uses the palette 
no. 1.

○ when the colour attribute map is active, then each field allows to select palette 0 
... 3 independently.

11



Transparent Overlay colours

I. When the  no_trans  bit in the  VIDEO_CONTROL register is set to 1, then no Overlay 
colour is transparent,  either in the pixel  modes or in the text  mode (regardless of  the 
trans15 bit state in the VIDEO_CONTROL register).

II. When the no_trans bit in the VIDEO_CONTROL register is set to 0 and the trans15 bit 
in the same register is cleared (which is the default), then:

● SR / LR pixel modes: colour „0” is transparent.
● HR  pixel  mode:  the  colour  selected  by  the  nibble  that  has  a  value  of  „0”  is 

transparent
● text mode: the background is transparent, if the bit 7 of the attribute is cleared.

III. When the no_trans bit in the VIDEO_CONTROL register is cleared and the bit trans15 
in the VIDEO_CONTROL register is set, then colours are transparent as described in the 
paragraph II, and additionally:

● SR / LR pixel modes: each colour with palette index $HF (where H = 0...F, i.e. $0F, 
$1F, $2F and so on up to $FF) is transparent;

● HR pixel mode: colour index $F is transparent;
● text mode: each colour with palette index $HF (where H = 0...F, i.e. $0F, $1F, $2F 

etc.. up to $FF) is transparent.

The  trans15 bit  allows to create invisible objects,  which can be used, for example, as 
fields to detect collisions with other Overlay objects.

12



Priorities OVERLAY modes <-> ANTIC/GTIA modes

Setting  priorities  between  the  Overlay  display  and  the  ANTIC/GTIA display  goes  as 
follows:

Every GTIA colour register (except COLBAK) has a corresponding bit in the VBXE priority 
register. The state of this bit decides, whether this colour (if it is being displayed by the 
ANTIC/GTIA) has to be overridden by the Overlay colour, or vice versa. Apart from that, 
the only colour always overridden by the Overlay is COLBAK.

See also the XDL description (meaning of bits in the main priority register).

The main priority register is loaded by the XDL. Additionally, if the colour attribute map is 
on, the main priority register state  is overridden by one of  the four predefined priority 
registers selected for the particular colour field of the colour attribute map. The predefined 
registers are set through the MSEL/PRIORMAP (see the description of the colour attribute 
map and MSEL/PRIORMAP).

In the GTIA modes known as GR.9 and 11 (16 shades or 16 hues) the Overlay is always 
displayed over the ANTIC/GTIA display (but in turn it may be overlaid by the P/MG).

13



Detecting collisions between the OVERLAY and ANTIC/GTIA

It is possible to detect collisions between the data displayed by the Overlay (either in pixel 
or character mode) and any of the GTIA colours COLPM0/1/2/3 and COLPF0/1/2/3.

The collision detection is performed automatically while the VBXE is producing the display.

The collision is detected when the bitwise AND of the local Overlay colour (without taking 
the OV_COLOR_SHIFT into account)  and the mask loaded to the  COLMASK  register 
results in a non-zero value, and in the same screen place any of the COLPFx or COLPMx 
colours is being displayed.

The collision code can be fetched from the COLDETECT register.

Clearing the collision state is accomplished by writing any value to the COLCLR register.

Want to know more? See the VBXE core register description.

NOTE: this mechanism should not be confused with the mechanism of detecting Overlay-
Overlay collisions offerred by the Blitter.

14



The order of fetching data in the XDL

The additional XDL data (addresses, scrolling registers etc.) are fetched or they are not, 
depending on the states of the corresponding bits in the XDLC (see the XDL description). 
The order of them in the memory is always the same, data corresponding to the lower bits 
of the XDLC are fetched before the data corresponding to the higher bytes of the XDLC:

- XDLC_RPTL (1 byte)
- XDLC_OVADR (5 bytes)
- XDLC_OVSCRL (2 bytes)
- XDLC_CHBASE (1 byte)
- XDLC_MAPADR (5 bytes)
- XDLC_MAPPAR (4 bytes)
- XDLC_OVATT (2 bytes)

After the XDLC word there may be maximum 20 bytes of data.

Example: an XDL that creates 16 scanlines (or 2 lines) of the text mode.

XDLC  equ  XDLC_TMON  +  XDLC_RPTL  +  XDLC_OVADR+XDLC_CHBASE  + 
XDLC_OVATT + XDLC_END

.word XDLC

.byte 15 ;how many scanlines without a change (xdlc_rptl)

.long adr ;3-byte screen memory address (xdlc_ovadr)

.word 160 ;automatic step (xdlc_ovadr)

.byte $20 ;CHBASE $20 * $800

.byte 0 ;(xdlc_ovatt) - narrow Overlay

.byte 255 ;(xdlc_ovatt) – the highest priority of the Overlay

15



THE COLOUR ATTRIBUTE MAP

The colour attribute map allows to locally (i.e. within a field of 8x1 up to 32x32 pixels of 
GR.8) change the colours PF0, PF1 and PF2, override the main Overlay priority over the 
ANTIC/GTIA to one of four predefined priorities, change the local colour palette for both 
ANTIC and Overlay screen modes, and change the resolution of the display generated by 
the ANTIC/GTIA from ANTIC hires (GR.8) to CCR (Colour Clock Resolution = GR.15) or 
vice versa.

Consequently,  the  attribute  map  greatly  extends  the  graphic  capabilities  of  your  Atari 
machine even if the proper Overlay modes are not in use.

Characteristics:

• the field size (X x Y): 8x1 up to 32x32 pixels of GR.8 (or ANTIC hires).
• map address in the VBXE VRAM: no limitations.
• automatic update of the address after displaying a full line of the map: 

programmable in the range 0 ... 4095 bytes.
• horizontal and vertical scrolling by 1 pixel of ANTIC hires, controlled by XDL. It is 

possible to change the register values in any scanline.
• every map field is defined by a set of 4 bytes stored consecutively in the VRAM. 

The bytes define as follows: 

• byte 1: local colour PF0
• byte 2: local colour PF1 
• byte 3: local colour PF2
• byte 4:

• local ANTIC<>OVERLAY priority (1 of 4 predefined ones)
• local resolution change
• local colour palette for ANTIC and Overlay display modes (independently). 

The choice is between 4 palettes. ANTIC and Overlay may use either the 
same or different palettes in the scope of the map field.

The  attribute  map  is  completely  controlled  by  XDL,  i.e.  its  VRAM  address,  scrolling 
registers, field size etc. are defined inside the XDL list.

Attribute data

Every field of the map is defined in the VBXE VRAM by four consecutive bytes:

b7 b6 b5 b4 b3 b2 b1 b0
Local substitute of the COLPF0 register (GTIA)

b7 b6 b5 b4 b3 b2 b1 b0
Local substitute of the COLPF1 register (GTIA)

b7 b6 b5 b4 b3 b2 b1 b0
Local substitute of the COLPF2 register (GTIA)

16



b7 b6 b5 b4 b3 b2 b1 b0
ANTIC/GTIA palette OVERLAY palette - RES PSEL1 PSEL0

b6, b7 – local palette selection for normal Playfield and P/MG objects. When the attribute 
map is active, it may be any of the four palettes. When the attribute map is disabled, it will 
always be the palette 0.

b4, b5 – local palette selection for the Overlay. When the attribute map is active, it may be 
any of the four palettes. When the attribute map is disabled, it will always be the palette 1.

b3 - reserved (unused) – write 0 here.

b2 (RES) – local change ANTIC HIRES <-> CCR (1 = enabled). This bit „reverses” the 
resolution  selected  by the  standard  ANTIC DL,  changing  the  mode locally (within  the 
particular field of the map) from ANTIC hires into CCR or vice versa.

b0, b1 (PSEL0 / PSEL1) – selection of one of the 4 predefined priorities OVERLAY <-> 
ANTIC/GTIA (see also MSEL/PRIORMAP).

PSEL1 PSEL0 register selected
0 0 Priority register P0 (loaded to MB0)
0 1 Priority register P1 (loaded to MB1)
1 0 Priority register P2 (loaded to MB2)
1 1 Priority register P3 (loaded to MB3)

NOTE:  Within  the  active  attribute  map  the  global  GTIA  colour  registers:  COLPF0,  
COLPF1 i COLPF2 and the global priority register are not used.

NOTE:  The  width  of  the  attribute  map  may  be  forced  to  correspond  to  the 
wide/normal/narrow  ANTIC  display.  This  is  accomplished  using  the  XDL,  see 
XDLC_OVATT.

17



MSEL/RGB

This mechanism allows to change the RGB components of the palette.

The VBXE allows to display up to 1024 colours at one time, out of the 21-bit hardware 
palette (2097152 colours). There are 4 sets (or palettes), 256 user-defined colours each.

The RGB palette for each of these 1024 (4 x 256) colours may be updated by writing the 
RGB components (8 bits each, the lowest significant bit = 0) into core registers, MB1, MB2 
and MB3 respectively. Done that the colour index in the palette (0 – 255) should be loaded 
into the MB0 register, and to the MSEL – the value of $C0 + palette number (0 ... 3).

That is:

MSEL = $c0 for palette 0, or
MSEL = $c1 for palette 1, or
MSEL = $c2 for palette 2, or
MSEL = $c3 for palette 3.

All RGB components of the selected colour are updated when the MSEL register is written 
to.

By default, when the attribute map is inactive, the palette 0 is assigned to the ANTIC/GTIA 
modes and to the P/MG, and palette 1 is assigned to the Overlay. Palettes 2 and 3 are 
unused.  This  changes,  when the attribute map gets activated.  Every field  of  the map 
allows to define, which one of the four palettes will be assigned to Overlay pixels, and 
which one – to the ANTIC/GTIA and P/MG pixels.

After power-up the palette  0  is  loaded by the default,  or  „factory”,  palette,  which is  a 
modified version of the laoo.act palette used by the Atari800 emulator. The palettes 1-3 
are zeroed (black colours only). Remember, that a program loaded previously could have 
changed the factory values in any of the palettes!

NOTE: the Overlay modes (pixel  and text)  and ANTIC/GTIA/P/MG do colour indexing  
always using 8 bits. Next, depending whether:

- the colour map is active
- the colour is generated by ANTIC/GTIA or Overlay

the proper palette is assigned (by expanding the colour index with additional two bits).

18



MSEL/PRIORMAP

This  mechanism allows  to  set  the  four  priority registers  that  define  priorities  between 
ANTIC/GTIA and Overlay displays. These registers are used and selected by the attribute 
map and override the main priority register selected by the XDL.

The attribute map allows (using bits b0 and b1 in the every fourth byte of the map) to  
choose one of the redefined priorities for the current field.

- load P0 priority definition to the MB0 register
- load P1 priority definition to the MB1 register
- load P2 priority definition to the MB2 register
- load P3 priority definition to the MB3 register
- load $80 to the MSEL register. On this write the Px registers will get updated.

The bits in each of the priority register is the same as in the main priority value defined by  
the XDL (see the XDL description), which is in use when the attribute map is inactive  
(locally or globally). Within the scope of the active attribute map the main priority remains  
unused.

19



MEMAC

The MEMAC is a part of the VBXE core responsible for allowing the system (CPU and 
ANTIC) access to the 512 KB VRAM installed inside the VBXE.

An access to the VRAM made through the MEMAC costs VBXE 1 cycle of the PCLK clock 
(14.18 MHz) per byte being read or written. Looking from the side of the CPU or ANTIC, 
there is no difference between this access an any other access to the memory or I/O 
registers. Technically the VBXE disables the standard RAM and substitutes own memory 
using the EXTSEL signal of the MMU.

The  VBXE memory  access  can  be  accomplished  through  „windows”  available  in  two 
memory areas:

$2000 - $3FFF - "MEMAC A" (an 8 KB window)
$4000 - $7FFF - "MEMAC B" (a 16 KB window)

Either of these two may be:

- disabled (the standard Atari RAM is visible there then)
- enabled for the CPU (the CPU sees the VRAM, the ANTIC sees the Atari RAM)
- enabled for the ANTIC (the ANTIC sees the VRAM, the CPU sees the Atari RAM)
- enabled for the CPU and for the ANTIC

Additionally, the bank selection is independent for the CPU and for the ANTIC, i.e. the 
CPU and ANTIC can see different VRAM banks. 

The MEMAC A window has 8 KB -> the VRAM is subdivided into 64 banks.
The MEMAC B window has 16 KB -> the VRAM is subdivided into 32 banks.

The special function of the MEMAC is to emulate the standard RAM extension known as 
320K RAMBO (64 KB conventional + 256 KB extended RAM, without the separate access 
for the CPU and ANTIC). As the address range of the RAM extension is the same as the 
address area of the MEMAC B window ($4000-$7FFF in the Atari memory), the extension 
gets disabled, when the MEMAC B window is activated. The RAMBO extension is mapped 
to the upper half of the VBXE VRAM ($40000-$7FFFF in the VBXE VRAM). You should 
remember, that this area is shared by the RAMBO emulation and VBXE VRAM (but there 
is also a version of the core, which does not emulate the RAMBO extension). 

Controlling registers

MA_CPU
bit 7 - 1 = CPU sees VBXE RAM inside MEMAC A area

0 = CPU sees the Atari RAM there
bit 6 - reserved
bits 0 - 5 select one of the 64 8 KB VBXE RAM banks.

MA_ANTIC
      bit 7 - 1 = ANTIC sees the VBXE RAM inside MEMAC A area
           0 = ANTIC sees the Atari RAM there
       bit 6 - reserved
       bits 0 - 5 select one of the 64 8 KB VBXE RAM banks

20



       
      MB_CPU
      bit 7 - 1 = CPU sees VBXE RAM inside MEMAC B area
              0 = CPU sees the Atari RAM there
      bit 6 - reserved
       bit 5 - reserved
       bits 0 - 4 select one of the 32 16 KB VBXE RAM banks

MB_ANTIC
bit 7 - 1 = ANTIC sees VBXE RAM inside MEMAC B area

               0 = ANTIC sees the Atari RAM there
        bit 6 - reserved
       bit 5 - reserved
       bits 0 - 4 select one of the 32 16 KB VBXE RAM banks
   

MAPPING ATARI MEMAC A/B ADDRESSES INTO VBXE VRAM

The VRAM addresses are 19-bit (512 KB). You can calculate the VRAM effective address 
from the MEMAC bank number and the offset inside the MEMAC window. It is important, 
because the VBXE core often requires the VRAM effective address to be given, therefore 
we have to know, where the data has been loaded to within the VRAM address space.

MEMAC A:
VRAM[18:0] = {A_BANK_NUMBER[5:0],A[12:0]}

MEMAC B:
VRAM[18:0] = {B_BANK_NUMBER[4:0],A[13:0]}
        
Example: write to VRAM starting at $12800 using the MEMAC A window.

A_BANK_NUMBER[5:0] = $12800 / $2000 = 9
ATARI_ADDRESS = $2000 + ($12800 & $1fff) = $2000 + $800 = $2800

     
Example: write to VRAM starting at $12800 using the MEMAC B window.

B_BANK_NUMBER[4:0] = $12800 / $4000 = 4
ATAR_ADDRESS = $4000 + ($12800 & $3fff) = $4000 + $2800 = $6800

21



BLITTER

The Blitter built into the VBXE core allows to copy and fill VRAM areas of any size.

The Blitter is controlled by the BlitterList – a sequence of data loaded into the VRAM by 
the Atari CPU. The general structure of the BlitterList looks as follows:

BCB
BCB
BCB
...
BCB with NEXT-marker cleared

The BCB stands for  „Blitter  Command Block”.  The BlitterList  consists  of  one or  more 
BCBs.  The  BCB is  a  set  of  information  for  the  Blitter.  Each  BCB defines  one  blitter 
operation. The BCB is 19 bytes long. 

Byte Name Description
1 source_adr0 bits 0 ... 7, source address
2 source_adr1 bits 8 ... 15, source address
3 source_adr2 bits 16 ... 18, source address
4 source_step0 bits 0 ... 7, source step
5 source_step1 bits 8 ... 11, source step
6 dest_adr0 bits 0 ... 7, destination address
7 dest_adr1 bits 8 ... 15, destination address
8 dest_adr2 bits 16 ... 18, destination address
9 dest_step0 bits 0 ... 7, destination step
10 dest_step1 bits 8 ... 11, destination step
11 blt_width0 bits 0 ... 7, object width (in bytes)
12 blt_width1 bit 8, object width (in bytes)
13 blt_height bits 0 ... 7, object height (in lines)
14 blt_and_mask AND-mask for source data
15 blt_xor_mask XOR-mask for source data
16 blt_collision_mask AND-mask for collision detection
17 blt_zoom X- and Y- axis zoom of the object being copied
18 pattern_feature pattern fill
19 blt_control additional information (see below)

22



source_adr

The source data for the Blitter operation may be located at any address inside the VBXE 
memory.

source_step

This parameter defines, how many bytes to add to, or subtract from the source_adr after 
the horizontal line of the blt_width width has been copied.

source step = 0...4095

dest_adr

The destination data for the Blitter operation may be located at any address inside the 
VBXE memory.

dest_step

This parameter defines, how many bytes to add to, or subtract from the dest_adr after the 
horizontal line of the blt_width width has been copied.

dest step = 0...4095

blt_width

The width of the object being copied (measured in BYTES), less 1.

blt_width = 0...511. This corresponds to the width of 1...512 bytes, and in the Overlay 
modes SR and LR this means 1 ... 512 pixels. In the HR mode this is 2 ... 1024 pixels.

blt_height

The height of the object being copied (measured in lines), less 1.

blt_height = 0 ... 255, i.e. 1 ... 256 lines

blt_and_mask

Clearing bits in the source data:

source' = source AND blt_and_mask

Every byte of  the source data undergoes this operation. The „source” in the equation 
above means the source data byte having been fetched by the Blitter.

blt_xor_mask

Reverting bits in the source data:

source'' = source' XOR blt_xor_mask

Every byte of the source data undergoes this operation.

23



blt_collision_mask

Collision mask. The collision detection is performed in modes 1, 2, 3, 4, 5 and 6 (see the 
description of blt_control) according the the following equation:

if (source'' != 0 && (blt_collision_mask & dest) != 0) BLT_COLLISION_CODE = dest;

where „dest” stands for a prefetched destionation data (before it is processed and written 
back).  Mode  6  uses  bit  0  ...  3  of  the  blt_collision_mask,  other  modes  use  all  bits. 
BLT_COLLISION_CODE is one of the core registers (see below).

blt_zoom

It  is  possible  to  resize  the  object  horizontally  and  vertically.  This  is  accomplished  by 
multiplying its width and height by a constant 1 ... 8.

b7 b6 b5 b4 b3 b2 b1 b0
BLT_ZOOMY INTLVE BLT_ZOOMX

The source data remains unchanged (blt_width and blt_height refer to the source object 
size in bytes), it is the destination area that gets enlarged. The enlargement is equal to:

  ZOOMX(Y) = BLT_ZOOMX(Y) + 1

The INTLVE bit controls the DESTINATION address modification, while a „horizontal” data 
line is being copied:

if the INTLVE bit is 0, then the address is modified (increased or decreased, see DX bit in 
blt_control) by 1.
if the INTLVE bit is 1, then the address is modified by 2.

As a result, when INTLVE = 1, the blitter writes to each second byte of the destination 
area leaving the rest unchanged. Thanks to that it is possible to independently manipulate 
character data and attributes in the text mode.

NOTE: the skipped bytes do not count into blt_width, so, if the INTLVE = 1, to perform the 
operation on the entire line of the 80-column text mode, one should set the blt_width to 
79, instead of 159.

pattern_feature

b7 b6 b5 b4 b3 b2 b1 b0
IN_USE - PATTERN_WIDTH

The pattern_feature allows to „replicate” the the source data within a horizontal line. If the 
IN_USE bit  is cleared, then this function is switched off  and the source data is never 
replicated.

If the IN_USE bit is 1, then, when PATTERN_WIDTH+1 (1 ... 64) bytes have been copied, 
the source address value is restored to its initial state for the line, and, next to this, the 
PATTERN_WIDTH+1 bytes will be copied again, and the source address will be restored 
again  etc.  until  blt_width+1  bytes  are  copied.  The  pattern  copying  will  get  aborted,  if 

24



(blt_width+1)%(PATTERN_WIDTH+1)  !=  0,  or  in  other  words,  blt_width  has  a  higher 
priority.

blt_control

The byte controlling the operation and general behaviour of the blitter:

b7 b6 b5 b4 b3 b2 b1 b0
DY DX SY SX NEXT MODE

MODE Description
0 The so called "COPY MODE". Every byte of the source data is copied to the 

destination,  without  any regard  to  transparency (values of  0)  and without 
collision detection.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
dest' = source'';
WriteDest(dest');

1 The main blitter mode. The source” data is copied to the destination area, IF 
(source” != 0). If the blt_collision_mask is non-zero, then before the copying 
the blitter will fetch the destination byte and if this byte is not a zero, then 
collision  will  occur,  and  the  dest  code  will  be  written  to  the 
BLT_COLLISION_CODE  register.  The  collision  detection  slows  down  the 
blitter.  If  the  collision  detection  is  not  desired,  it  is  better  to  set  the 
blt_collision_mask to 0, this disables the collision detection and the blitter will 
work faster.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0) 
{
  dest = ReadDest();
  if (dest & blt_collision_mask) BLT_COLLISION_CODE = dest;
  dest' = source'';
  WriteDest(dest');
}

25



MODE Description
 2 The written out data dest’ is an arithmetical sum of source” and the dest.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0) 
{
  dest = ReadDest();
  if (dest & blt_collision_mask) BLT_COLLISION_CODE = dest;
  dest' = dest + source'';
  WriteDest(dest');
}

3 The written out data dest’ is a result of a bitwise OR of source” and dest.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0) 
{
  dest = ReadDest();
  if (dest & blt_collision_mask) BLT_COLLISION_CODE = dest;
  dest' = dest | source'';
  WriteDest(dest');
}

4 The written out data dest’ is a result of a bitwise AND of source” and dest.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
dest = ReadDest();
if (source'' != 0 && (dest & blt_collision_mask))
{
  BLT_COLLISION_CODE = dest;
}
dest' = dest & source'';
WriteDest(dest');

5 The written out data dest’ is a result of a bitwise XOR of source” and dest.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0) 
{
  dest = ReadDest();
  if (dest & blt_collision_mask) BLT_COLLISION_CODE = dest;
  dest' = dest  ̂source'';
  WriteDest(dest');
}

26



MODE Description
6 HR Overlay support.  It  is  basically the  mode 1,  except  that  transparency 

analysis and collision detection is done by nibbles rather than by bytes.

source = ReadSource();
source' = source & blt_and_mask;
source'' = source' ^ blt_xor_mask;
if (source'' != 0) 
{
  dest = ReadDest();

  if (source''[3:0] != 0)
  {
    if (dest[3:0] & blt_collision_mask[3:0]) BLT_COLLISION_CODE[3:0] = dest[3:0];
    dest'[3:0] = source''[3:0]; 
  }
 else dest'[3:0] = dest[3:0];
 
  if (source''[7:4] != 0)
  {
    if (dest[7:4] & blt_collision_mask[3:0]) BLT_COLLISION_CODE[7:4] = dest[7:4];
    dest'[7:4] = source''[7:4]; 
  }
 else dest'[7:4] = dest[7:4];

  WriteDest(dest');
}

7 unused, reserved.

NEXT – if this bit is cleared (0), then te current BCB is the last BCB in the BlitterList, and 
after  its  execution  the  Blitter  will  end  processing,  clear  the  BUSY  flag  in  the 
BLITTER_BUSY register, and triggering an IRQ, if it was allowed in the IRQ_CONTROL 
register. If the NEXT bit is set (1), then after finishing with the current BCB, the Blitter will 
behave as follows:

- clear the BUSY flag in the BLITTER_BUSY register
- at the same time it will set the BCB_LOAD flag in the same register
- fetch the next BCB
- set the BUSY flag in the BLITTER_BUSY register
- perform the next BCB
- after that, clear the BUSY flag
- check the NEXT bit
- etc. (the end or a next BCB)

Bits SX, SY, DX, DY.

At the outset it should be clarified, that before the Blitter starts, it makes the following 
operation:

source_adr' = source_adr;
dest_adr' = dest_adr;

Data is fetched from and written to the addresses marked as ‘ (prim).

SX – method of the source address modification within a horizontal data line:

SX = 0: source_adr' = source_adr' + 1

27



SX = 1: source_adr' = source_adr' - 1

SY – method of source address modification after the horizontal line is finished:

SY = 0 : source_adr = source_adr + source_step
SY = 1 : source_adr = source_adr - source_step

And: 

source_adr' = source_adr;

DX - method of the destination address modification within a horizontal data line:

DX = 0 : dest_adr' = dest_adr' + 1
DX = 1 : dest_adr' = dest_adr' - 1

DY - method of destination address modification after the horizontal line is finished:

DY = 0 : dest_adr = dest_adr + dest_step
DY = 1 : dest_adr = dest_adr - dest_step

And:

dest_adr' = dest_adr;

28



The following figure shows the effects of the source and destination address modification 
during the Blitter’s work:

S(D)X=0  
S(D)Y=0

START ( = source_adr lub dest_adr w BCB) 
STOP - ostatni bajt danych
blt_width = 6 (7 punktów)
blt_height = 6 (7 linii)
1 kratka = 1 bajt
Adresy kolejnych wierszy oddalone od siebie 
o wartość source_step lub dest_step

S(D)X=1  
S(D)Y=0

S(D)X=0  
S(D)Y=1

S(D)X=1  
S(D)Y=1

Changing the bits SX, SY, DX and DY you can invert the object vertically and horizontally, 
change  the  copying  direction  to  avoid  overlapping  etc.  The  source_adr  and  dest_adr 
values in the BCB should always be adjusted accordingly.

29



The Blitter and constant source data

If the result of the following equation:

(~blt_and_mask ^ blt_xor_mask) 

is $FF, then the source data is CONSTANT – it is independent from the source area and 
its value is equal to blt_xor_mask. The Blitter will skip the phase of fetching the source 
data, and the entire operation will  be performed quicker. Filling VRAM with a constant 
value is twice as fast as copying.

30



CORE REGISTERS

Address Write Read
Dx40 VIDEO_CONTROL CORE_VERSION ( = $10 )
Dx41 XDL_ADR0   bity 0 ... 7 255
Dx42 XDL_ADR1   bity 8 ... 15 255
Dx43 XDL_ADR2   bity 16 ... 18 255
Dx44 MSEL 255
Dx45 MB0 255
Dx46 MB1 255
Dx47 MB2 255
Dx48 MB3 255
Dx49 COLMASK 255
Dx4A COLCLR COLDETECT
Dx4B - 255
Dx4C MA_CPU 255
Dx4D MA_ANTIC 255
Dx4E MB_CPU 255
Dx4F MB_ANTIC 255
Dx50 BL_ADR0 bits 0 ... 7 BLT_COLLISION_CODE
Dx51 BL_ADR1 bits 8 ... 15 255
Dx52 BL_ADR2 bits 16 ... 18 255
Dx53 BLITTER_START BLITTER_BUSY
Dx54 IRQ_CONTROL IRQ_STATUS
Dx55 - 255
Dx56 - 255
Dx57 - 255
Dx58 - 255
Dx59 - 255
Dx5A - 255
Dx5B - 255
Dx5C - 255
Dx5D - 255
Dx5E - 255
Dx5F - 255

x = 6 or 7, depending on where the VBXE is decoded in the Atari memory.

31



VIDEO_CONTROL

b7 b6 b5 b4 b3 b2 b1 b0
- - - - trans15 no_trans xcolor xdl_enabled
- - - - w-0 w-0 w-0 w-0

Symbols:

- first line: bit number b0 - b7
- second line: bit function ( '-' = unused )
- third line: 

'w' – write only
'r' – read only
'rw' – read/write
"-0" "0" after RESET
"-1" "1" after RESET
"-x" undefined after RESET

xcolor: 

1 = display the PM0, PM1, PM2, PM3, PF0, PF1, PF2, PF3, BKGND colours taking the bit 
0 into account (this makes 16 instead of 8 shades), and in the ANTIC hires (GR.0 and 
GR.8) display independent colours for the foreground and for the background.

0 = full GTIA compatibility: 8 shades in colour registers (128 colours) and the foreground 
colour dependent on the background colour in hires modes.

NOTE: the xcolor bit operates so either for global GTIA registers and for colours modified  
locally by the colour map fields.

xdl_enable:

1 = enable the XDL processing after the nearest VBL pulse.

0 = disable the XDL processing after the nearest VBL pulse.

no_trans:

0 = in the Overlay modes the colour index 0 will be treated as transparent and the ANTIC/
GTIA display will be visible in its place.

1 = the Overlay has no transparent colours.

This bit allows to use all 256 palette indices as colours without problems.

NOTE: the  no_trans bit has no influence on the Blitter, which in most of its modes will  
consider colour index 0 as transparent.

trans15:

This bit is only taken into account, when  no_trans = 0. This allows to define additional 
transparent colours: see "Transparent Overlay colours".

32



XDL_ADR0

b7 b6 b5 b4 b3 b2 b1 b0
xdl_adr[7] xdl_adr[6] xdl_adr[5] xdl_adr[4] xdl_adr[3] xdl_adr[2] xdl_adr[1] xdl_adr[0]

w-x w-x w-x w-x w-x w-x w-x w-x

bits 0 ... 7 of the XDL address in the VBXE VRAM.

The XDL address should be set before enabling the XDL processing (xdl_enable in the 
VIDEO_CONTROL register).

XDL_ADR1

b7 b6 b5 b4 b3 b2 b1 b0
xdl_adr[15] xdl_adr[14] xdl_adr[13] xdl_adr[12] xdl_adr[11] xdl_adr[10] xdl_adr[9] xdl_adr[8]

w-x w-x w-x w-x w-x w-x w-x w-x

bits 8 ... 15 of the XDL address in the VBXE VRAM.

XDL_ADR2

b7 b6 b5 b4 b3 b2 b1 b0
- - - - - xdl_adr[18] xdl_adr[17] xdl_adr[16]

- - - - - w-x w-x w-x

bits 16 ... 18 of the XDL address in the VBXE VRAM.

MSEL

b7 b6 b5 b4 b3 b2 b1 b0
SEL1 SEL0 The exact function depends on SEL0 and SEL1
w-0 w-0 w-x w-x w-x w-x w-x w-x

SEL1 SEL0 działanie
0 0 do nothing
0 1 reserved / forbidden
1 0 execute MSEL / PRIORMAP
1 1 execute MSEL / RGB

See the description of MSEL/RGB and MSEL/PRIORMAP.

MB0, MB1, MB2, MB3

See the description of MSEL/RGB and MSEL/PRIORMAP.

MA_CPU

33



b7 b6 b5 b4 b3 b2 b1 b0
ENA - bank number: 0 ... 63
w-0 - w-x w-x w-x w-x w-x w-x

MEMAC. The number  of  the  MEMAC bank of  VRAM in  the  window of  $2000-$3FFF 
available to the CPU, when ENA = 1. When ENA = 0, then the CPU accesses the internal 
Atari memory in this area.

MA_ANTIC

b7 b6 b5 b4 b3 b2 b1 b0
ENA - bank number: 0 ... 63
w-0 - w-x w-x w-x w-x w-x w-x

MEMAC. The number  of  the  MEMAC bank of  VRAM in  the  window of  $2000-$3FFF 
available to the ANTIC, when ENA = 1. When ENA = 0, then the ANTIC accesses the 
internal Atari memory in this area.

MB_CPU

b7 b6 b5 b4 b3 b2 b1 b0
ENA - - bank number: 0 ... 31
w-0 - - w-x w-x w-x w-x w-x

MEMAC. The number  of  the  MEMAC bank of  VRAM in  the  window of  $4000-$7FFF 
available to the CPU, when ENA = 1. When ENA = 0, then the CPU accesses the internal 
Atari memory in this area.

MB_ANTIC

b7 b6 b5 b4 b3 b2 b1 b0
ENA - - bank number: 0 ... 31
w-0 - - w-x w-x w-x w-x w-x

MEMAC. The number  of  the  MEMAC bank of  VRAM in  the  window of  $4000-$7FFF 
available to the ANTIC, when ENA = 1. When ENA = 0, then the ANTIC accesses the 
internal Atari memory in this area.

34



BL_ADR0

b7 b6 b5 b4 b3 b2 b1 b0
blt_adr[7] blt_adr[6] blt_adr[5] blt_adr[4] blt_adr[3] blt_adr[2] blt_adr[1] blt_adr[0]

w-x w-x w-x w-x w-x w-x w-x w-x

bits 0 ... 7 of the BlitterList address in the VBXE VRAM.

The BlitterList address in the VRAM consists of 19 bits. The BlitterList can be located 
anywhere in the VRAM and start at any byte.  There are no limits to the length of  the 
BlitterList. When the address of the BlitterList has been written to the BL_ADR, the Blitter 
may be started. After it has finished, the contents of the BL_ADR remains unchanged.

The BL_ADR has to be loaded before starting the Blitter.

BL_ADR1

b7 b6 b5 b4 b3 b2 b1 b0
blt_adr[15] blt_adr[14] blt_adr[13] blt_adr[12] blt_adr[11] blt_adr[10] blt_adr[9] blt_adr[8]

w-x w-x w-x w-x w-x w-x w-x w-x

bits 8 ... 15 of the BlitterList address in the VBXE VRAM.

BL_ADR2

b7 b6 b5 b4 b3 b2 b1 b0
- - - - - blt_adr[18] blt_adr[17] blt_adr[16]

- - - - - w-x w-x w-x

bits 16 ... 19 of the BlitterList address in the VBXE VRAM.

BLITTER_START

b7 b6 b5 b4 b3 b2 b1 b0
- - - - - - - 1=START

0=STOP
- - - - - - - w-0

Setting b0 bit to 1 causes the Blitter to start. It will read the BlitterList, then it will perform 
according to the instructions found in the BlitterList.

While the Blitter is working, it is possible to write 0 to the b0 bit. It will cause the Blitter to 
be stopped immediately. This mechanism allows to abort the Blitter, if it is looping infinitely 
(this can happen, when the Blitter has been started, and the VRAM is filled with a value of 
$FF – the BlitterList will then always contain the NEXT-marker). This function should not 
be used normally.

IRQ_CONTROL

35



b7 b6 b5 b4 b3 b2 b1 b0
- - - - - - - IRQE
- - - - - - - w-0

Enable the IRQ triggered after the Blitter has finished its work (i.e. after the transition from 
the BUSY state to IDLE state).
IRQE = 0 – Blitter IRQ disabled.
IRQE = 1 – Blitter IRQ allowed.

Writing any value of IRQE acknowledges and disables the Blitter IRQ, when it has been 
triggered.

CORE_VERSION

The version of the core, in BCD. $14 = version 1, revision 4.

BLT_COLLISION_CODE

The code of the collision detected, when the Blitter was running. A collision was detected, 
when the BLT_COLLISION_CODE != 0. The code corresponds to the non-zero value of 
the pixel overwritten by the Blitter.

BLITTER_BUSY

b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 BUSY BCB_LOAD
- - - - - - r-0 r-0

This register contains a non-zero value, while the Blitter is running, i.e. is processing the 
BlitterList (BCB_LOAD = 1) or it performs the actual operation (BUSY = 1). In IDLE state 
this register contains a value of 0 and the Blitter may be prepared for another task.

IRQ_STATUS

b7 b6 b5 b4 b3 b2 b1 b0
0 0 0 0 0 0 0 IRQF
- - - - - - - r-0

IRQF = 0 – no IRQ has been requested by the VBXE.
IRQF  =  1  –  the  Blitter-Done  IRQ  has  been  requested.  Acknowledge  by  a  write  to 
IRQ_CONTROL.

36



COLMASK

The AND mask that allows to detect collisions between the Overlay and the Playfield / 
P/MG of the ANTIC/GTIA. The collision may be detected, if: 

(Overlay_colour & COLMASK) != 0.

(& is a bitwise AND)

The Overlay colour corresponds to the Overlay colour index (0 ...  255) currently being 
displayed, without taking the OV_COLOR_SHIFT into account, and independently of the 
selected palette. This way it  is possible to limit the collision detection to a part of  the 
objects / colours of the Overlay.

COLCLR

Writing any value here will clear the COLDETECT register.

COLDETECT

The latch register of detected collisions. As the display is being generated, the collisions 
are detected in the process. A bit set to 1 means that a collision has been detected. For a 
collision to be detected, the condition must be met first, as specified in the description of 
the COLMASK register. The priority of the Overlay to the ANTIC/GTIA display does not 
have influence on the collision detection. Clearing bits (all at once) is accomplished by 
writing any value to the COLCLR register.

bit Meaning (when set to 1)
b0 OVERLAY collides with COLPM0
b1 OVERLAY collides with COLPM1
b2 OVERLAY collides with COLPM2
b3 OVERLAY collides with COLPM3
b4 OVERLAY collides with COLPF0
b5 OVERLAY collides with COLPF1
b6 OVERLAY collides with COLPF2
b7 OVERLAY collides with COLPF3

37


	THE XDL
	OVERLAY MODES
	THE COLOUR ATTRIBUTE MAP
	MSEL/RGB
	MSEL/PRIORMAP
	MEMAC
	BLITTER
	CORE REGISTERS

